The Universal Selection Source: Plastics & Elastomers

Industry News

Nanotech / 3D Printing Combo with Plastic Helps Detect Leaks in Pipelines

Published on 2017-03-14. Author : SpecialChem

As soon as it comes out of the printing nozzle, the solvent evaporates and the ink solidifies. It takes the form of filaments slightly bigger than a hair. The manufacturing work can then begin.
As soon as it comes out of the printing nozzle, the solvent
evaporates and the ink solidifies. It takes the form of
filaments slightly bigger than a hair. The manufacturing
work can then begin.
Carbon nanotubes have made headlines in scientific journals for a long time, as has 3D printing. But when both combine with the right polymer, in this case a thermoplastic, something special occurs: electrical conductivity increases and makes it possible to monitor liquids in real time. This is a huge success for Polytechnique Montréal.

CNT / 3D Printing Alliance


The article “3D Printing of Highly Conductive Nanocomposites for the Functional Optimization of Liquid Sensors” was published in the journal Small on November 23, 2016. Renowned in the field of micro- and nanotechnology, Small placed this article on its back cover, a sure sign of the relevance of the research conducted by mechanical engineer Professor Daniel Therriault and his team. In practical terms, the result of this research looks like a cloth; but as soon as a liquid comes into contact with it, said cloth is able to identify its nature. In this case, it is ethanol, but it might have been another liquid. Such a process would be a terrific advantage to heavy industry, which uses countless toxic liquids.

A Simple Yet Efficient Recipe


While deceptively simple, the recipe is so efficient that Professor Therriault protected it with a patent. In fact, a U.S. company is already looking at commercializing this material printable in 3D, which is highly conductive and has various potential applications.
  • The first step: take a thermoplastic and, with a solvent, transform it into a solution so that it becomes a liquid. 
  • Second step: as a result of the porousness of this thermoplastic solution, carbon nanotubes can be incorporated into it like never before, somewhat like adding sugar into a cake mix. The result: a kind of black ink that’s fairly viscous and whose very high conductivity approximates that of some metals. 
  • Third step: this black ink, which is in fact a nanocomposite, can now move on to 3D printing. As soon as it comes out of the printing nozzle, the solvent evaporates and the ink solidifies. It takes the form of filaments slightly bigger than a hair. The manufacturing work can then begin.

Prof. Daniel Therriault
Prof. Daniel Therriault

Advantages of This Technology


The research conducted at Polytechnique Montréal is at the vanguard in the field of uses for 3D printers. The era of amateurish prototyping, like printing little plastic objects, belongs to the past. These days, all manufacturing industries, whether aviation, aerospace, robotics or medicine, etc., have set their sights on this technology.

There are several reasons for this. Firstly, the lightness of parts because plastic is substituted for metal. Then there is the precision of the work done at the microscopic level, as is the case here. Lastly, with the nanocomposite filaments usable at room temperature, conductivities can be obtained that approximate those of some metals. Better still, since the geometry of filaments can be varied, measures can be calibrated that make it possible to read the various electric signatures of liquids that are to be monitored.

A Topical Example: Pipelines


At the connection points of pipes that form pipelines, there are flanges.
  • The idea would be to factory- manufacture the pipes with flanges coated by 3D printing. 
  • The coating would be a nanocomposite whose electric signature is calibrated according to the liquid being transported – oil, for instance. 
  • If there is a leak and the liquid touches the printed sensors based on the concept developed by Professor Therriault and his team, an alert would sound in record time, and in a much targeted way. 
  • That’s a tremendous advantage, both for the population and the environment; in case of a leak, the faster the reaction time, the lesser the damages.

Professor Therriault’s work received support from the Centre de recherche sur les systèmes polymères et composites à haute performance (Research Centre for High-Performance Polymer and Composite Systems – CREPEC), the Canada Research Chairs, the Natural Sciences and Engineering Research Council of Canada (NSERC), Mitacs and the Canada Foundation for Innovation (CFI).

About Polytechnique Montréal


Polytechnique Montréal has taken effort to build a reputation as an international engineering school and be an active partner in technological, economic and social development. Polytechnique's staff members have made the institution what it is today through their ideas, vision, energy and common objective—that of making Polytechnique a success, always aiming higher.

PS: If you liked this News, you might enjoy our Plastics & Elastomers Industry Newsletter. All the Industry News delivered twice a week right to your inbox. Sign up here!


Source: Polytechnique Montréal
Be the first to comment on "Nanotech / 3D Printing Combo with Plastic Helps Detect Leaks in Pipelines"

Leave a comment





Your email address and name will not be published submitting a comment or rating implies your acceptance to SpecialChem Terms & Conditions

Tutorial

High Temperature Plastics: How to Well Control Melt Temperature

Well measure & adjust the melt temperature of your high temperature plastics (PA, PPA, PPS...)

Sitecore.Data.Items.Item

Channel Alerts

Receive weekly digests on hot topics

Receive your alerts

Back to Top