The Universal Selection Source: Plastics & Elastomers

Industry News

New Opportunities for Flexible Electronics: Thermally Conductive Rubber

Published on 2017-02-20. Author : SpecialChem

Thubber Stretchability
Thubber Stretchability
Carmel Majidi and Jonathan Malen of Carnegie Mellon University have developed a thermally conductive rubber material that represents a breakthrough for creating soft, stretchable machines and electronics. The findings were published in Proceedings of the National Academy of Sciences this week.

Thubber – A Stretchable Rubber


The new material, nicknamed “thubber,” is an electrically insulating composite that exhibits an unprecedented combination of metal-like thermal conductivity and elasticity similar to soft, biological tissue that can stretch over six times its initial length.

Carmel Majidi, an associate professor of mechanical engineering, said:
“Our combination of high thermal conductivity and elasticity is especially critical for rapid heat dissipation in applications such as wearable computing and soft robotics, which require mechanical compliance and stretchable functionality.”

Potential Applications


Navid Kazem, Jonathan Malen, and Carmel Majidi Demonstrate the Elasticity of a Strip of “Thubber”
Navid Kazem, Jonathan Malen, and Carmel Majidi
Demonstrate the Elasticity of a Strip of “Thubber”
Applications could extend to industries like athletic wear and sports medicine—think of lighted clothing for runners and heated garments for injury therapy. Advanced manufacturing, energy, and transportation are other areas where stretchable electronic material could have an impact.

Jonathan Malen, an associate professor of mechanical engineering, said:
“Until now, high power devices have had to be affixed to rigid, inflexible mounts that were the only technology able to dissipate heat efficiently. Now, we can create stretchable mounts for LED lights or computer processors that enable high performance without overheating in applications that demand flexibility, such as light-up fabrics and iPads that fold into your wallet.”

The key ingredient in “thubber” is a suspension of non-toxic, liquid metal microdroplets. The liquid state allows the metal to deform with the surrounding rubber at room temperature. When the rubber is pre-stretched, the droplets form elongated pathways that are efficient for heat travel. Despite the amount of metal, the material is also electrically insulating.

To demonstrate these findings, the team mounted an LED light onto a strip of the material to create a safety lamp worn around a jogger’s leg. The “thubber” dissipated the heat from the LED, which would have otherwise burned the jogger. The researchers also created a soft robotic fish that swims with a “thubber” tail, without using conventional motors or gears.

“As the field of flexible electronics grows, there will be a greater need for materials like ours,” said Majidi. “We can also see it used for artificial muscles that power bio-inspired robots.”

Majidi and Malen acknowledge the efforts of lead authors Michael Bartlett, Navid Kazem, and Matthew Powell-Palm in performing this multidisciplinary work. They also acknowledge funding from the Air Force, NASA, and the Army Research Office.

About Carnegie Mellon University


CMU is a global research university known for its world-class, interdisciplinary programs: arts, business, computing, engineering, humanities, policy and science. Carnegie Mellon University is a private research university in Pittsburgh, Pennsylvania.

PS: If you liked this News, you might enjoy our Plastics & Elastomers Industry Newsletter. All the Industry News delivered twice a week right to your inbox. Sign up here!


Source: Carnegie Mellon University
Be the first to comment on "New Opportunities for Flexible Electronics: Thermally Conductive Rubber"

Leave a comment





Your email address and name will not be published submitting a comment or rating implies your acceptance to SpecialChem Terms & Conditions

Tutorial

How to Reduce your Flame Retardants Loading

Achieve your Fire Resistance targets using less flame retardants & preserve your plastic mechanical performance.

Sitecore.Data.Items.Item

Back to Top